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ABSTRACT 

We consider the numerical solution of the one-dimensional Schriidinger equation 
in a potential of the type occurring in molecular spectroscopy, i.e., with both an 
inner and an outer classical turning point. Some practical tricks are described which, 
it is hoped, may prove useful to others. These involve choice of a step size, changing 
step size, iteration on the eigenvalue, setting upper and lower bounds on the eigen- 
value, determining a useful range of x for the integration, etc. Formulas are derived 
for the value of the function, and of the first derivative, to be used in conjunction 
with the Noumerov method. 

I. INTRODUCTION 

In connection with a calculation of molecular energy levels of the quarkium 
molecule ion, it proved necessary to solve the one-dimensional (radial) Schriidin- 
ger equation many times over, for different values of the vibrational quantum 
number N (= number of nodes in the radial wavefunction) and of the angular 
momentum number L. The calculation being of an exploratory nature, we were 
not interested in extreme accuracy for the wavefunction, and were willing to 
trade accuracy against machine time. The methods described in this paper are, 
however, useful for any desired accuracy, the modification in the choice of param- 
eters being obvious in each case. 

We shall discuss the various problems encountered, and methods used to solve 

1 On study leave from the University of New South Wales, Kensington, NSW, Australia. 
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these problems, in an order designed to facilitate the reading of the paper, rather 
than in completely logical order. These problems are as follows. 

(1) How to choose a step size, how to decide when the step size needs chang- 
ing, and how to carry out this change. In this connection, a midpoint formula is 
developed for use with the Noumerov method. 

(2) How to iterate on the eigenvalue when already close to it. The usual 
variational method is put into a convenient form, and a formula is developed for 
the derivative of the wavefunction, to be used with the Noumerov method (it 
should be noted that the Nuomerov method itself does not give the derivative 
at all). 

(3) How to narrow down the search for the desired eigenvalue (given num- 
ber of nodes N) in the initial stages. 

(4) How to decide on a practical range of the independent variable x (or r) 
for the numerical integration. 

All these processes, many of them involving choices, are to be carried out by 
the machine, without operator intervention during the course of the computation. 

The method described here are doubtlessly not all new, though some of them 
probably are. In a field as well worked as this one, it would be a major job searching 
through the literature so as to give proper credit at all stages. We thought it best 
to describe methods which we have actually used, and which have worked ef- 
fectively, without trying to determine who originated each of the methods de- 
scribed. 

II. STATEMENTOFTHE~ROBLEM,ANDA QUICK REVIEWOFTHENOUMEROVMETHOD 

We write the one-dimensional Schrodinger equation in the form 

where 

d2u/dx2 = f(x)u(x), (2.1) 

f(x) = (2M/h2)[V(x) - E]. (2.2) 

Here V(X) is the potential energy function, M is the reduced mass of the problem, 
and fi is Plan&s constant divided by 2~. The potential V(x) approaches zero in 
the limit of large positive X, it is negative for intermediate values of X, and becomes 
positive and large for small positive x. Formally speaking, we desire a solution 
u(x) which is bounded and square-integrable on the positive x axis, with u(0) = 0. 
In practice, we need not consider values near x = 0 at all, since U(X) becomes ex- 
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ponentially small in that region, due to the “repulsive core” of the potential V(X). 
The energy E in (2.2) is an eigenvalue, to be determined so that the solution 
uN(x) of (2.1) is not only square-integrable (and therefore approaches zero as x 
approaches infinity), but has exactly N nodes (zeros) on the positive x axis. 

The eigenvalues EN in question are negative. For any E, eigenvalue or not, 
there are two values of x, called the classical turning points, at which 

f(x) = 0 classical turning points. (2.3) 

The desired solution u(x) has increasing exponential behavior for 0 < x < x1, 
oscillatory behavior between the two turning points [where f(x) is negative], 
and decreasing exponential behavior for x > x2. 

In the remainder of this Section, as well as in Section III, we shall concentrate 
on the problem of numerical integration of the differential equation (2. l), without 
worrying about the eigenvalue problem aspects; that is, we assume that f(x) is 
a given function, which is large and positive for small x, becomes negative in the 
range x1 < x < x2 [where x1 and xZ are the solutions of (2.3)], and then becomes 
positive again, approaching a constant positive value as x approaches infinity. 

Considered purely as a differential equation, Eq. (2.1) is linear, second-order, 
and self-adjoint (does not involve the first derivative explicitly). There is one 
“canonical” method for its numerical solution, the Noumerov method, which is 
so clearly superior to all other methods that no other method should be seriously 
considered in practice. To establish notation for later use, we review this method 
briefly here, and follow this with a brief reminder why this is the method of choice. 

We start from the Taylor expansion of u(x + h) around the point x, 

u(x + h) = g $ U(n) 
,,=O . 

(2.4) 

where P) is the n’th derivative of U(X) evaluated at the point x. We obtain 

+ [u(x + h) + u(x - h)] = u + + I%‘2 + $ u(4) + g ZP) + . . . (2.5) 

and, differentiating twice, 

+ [u(2) (x + h) + u(2) (x - h)] = u(2) + ; /zw + $ u(6) + . . . . (2.6) 

We now multiply (2.6) by the factor 3 h2, and subtract the result from (2.5). 
This eliminates the term proportional to u t4). We replace the second derivative 



SCHRGDINGER EQUATION 385 

0, wherever it occurs, by f(x)u(x) according to (2.1). Introducing the notation 

T(x) = $(x) = ; Lg- [V(x) - E] ) (2.7) 

we thus arrive at the basic formula of the Noumerov method: 

[l - z-(x + h)]u(x + h) + [l - T(x - h)]u(x - h) 

h6 
= [2 + lor(x)]u(x) - - ZP) + . . . . 

240 (2.8) 

If u(x) and u(x - h) are known, u(x + h) can be found directly from this equa- 
tion if the error term, proportional to u@), is ignored; the values of T(x) are known, 
of course. 

This is the method of choice for the integration of (2.1) because it is the highest- 
order method which is at the same time a three-point method. Lower-order meth- 
ods such as the Runge-Kutta method (error of order h4d4’) lead to smaller net 
intervals h, and hence longer integration times and more roundoff errors. Methods 
involving more than three adjacent function values should be avoided like the 
plague, since they are frequently unstable. They amount to replacing the original 
second-order differential equation by a difference equation of a higher order. 
The difference equation then has spurious roots which bear no relation to proper- 
ties of the original differential equation; if one of the spurious roots gives rise to 
an exponentially increasing spurious contribution (and this is a frequent circum- 
stance), the solution is completely submerged in numerical errors after compara- 
tively few steps. If the Noumerov method with a given step size h has insufficient 
accuracy, the remedy lies in decreasing the step size, not in going to some other 
method. 

III. CHANGING NET SIZE 

In view of the large positive values of the potential V(x) for small x, we must 
start the integration with a rather small net size h. Unless we are prepared to 
change net size as we go out, we will then waste a lot of machine time in the re- 
gion where f(x) is small in absolute value. It is therefore necessary to decide, 
during the course of the integration, whether the net size can be increased with 
safety, whether it must perhaps be decreased, and to program in the necessary 
steps for carrying out these operations. 

In the neighborhood of a point x at whichf(x) is positive and varying slowly, 
the solution u(x) has roughly exponential behavior exp(& ax) with a 2: ]f(x)]ll~. 
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In a region of negativef(x), the behavior of U(X) is oscillatory, of type sin(k.u -~ h) 
with k N [-f(x)] 1/Z In either case, we obtain the estimate . 

u(6) - [f(x)]“u(x). (3.1) 

We substitute this estimate into the error term of (2.8), and use the notation 
(2.7) to obtain 

Relative error per step = Error in u(x + h) 
44 

-_ - - g [T(x)]3. (3.2) 

The relative error per step that we are prepared to tolerate depends on the 
total number of steps we anticipate having to take, and on the accuracy with 
which we wish to know the final wavefunction. Crudely speaking, the number 
of steps we shall have to take is proportional to the number of nodes N in the 
wavefunction, since a given accuracy in u(x) decides in the main the number of 
steps h needed per half-wavelength of u(x), and the number of half-wavelengths 
can be estimated as N + 4 for our present purpose. 

To give an example, suppose we anticipate having to take some 500 steps alto- 
gether, and we wish to know the function u(x) to 1% accuracy. We can then tolerate 
relative errors of up to 2 x 1O-5 per step, which by (3.2) means j T(x) 1 IO.01 
is a safe upper limit. Since the actual error committed is proportional to the cube 
of T(x), we gain accuracy rapidly as T(X) decreases in absolute value. Thus, we 
also want to avoid T(x) becoming too small; otherwise, we are wasting steps. 
Suppose we decide to double the step size h when 1 T(X) / falls below one fifth 
the value of its upper limit, i.e., below 0.002 in our example. Doubling the step 
size multiplies T(X) [Eq. (2.7)] by 4. Thus the new value of T after the net-size 
doubling is 0.008, still below the upper limit 0.01. If T(x) decreases steadily in 
absolute value as x increases (as it does in our problem until we reach the inner 
turning point), the sooner the net-size doubling is done, the better. 

These estimates depend, of course, on integrating in such a way that the error 
made at a given step does not tend to perpetuate itself, with compound interest, 
during subsequent steps. In practice, this means we must not integrate “against 
the grain” of the differential equation: e.g., for x larger than the outer turning 
point, the solution we want has decreasing exponential behavior; if we integrate 
in that region, every little error we make admixes to this desired solution an un- 
desired portion proportional to an increasing exponential. After comparatively 
few steps, the desired solution is utterly submerged by the exponentially increasing 
error terms. The remedy is obvious, however. In this region of x we must in- 
tegrate inwards rather than outwards. With this understood, our crude method 
of error estimation is adequate. 
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It should be noted that the condition deduced from the estimate (3.2) is a con- 
dition on T(x), i.e., on the coefficient in the differential equation, not on the 
solution u(x) directly. This highly desirable behavior is associated with the lin- 
earity of the differential equation (2.1), and is sometimes not brought out clearly 
in books on numerical analysis where the emphasis is frequently on the solution 
of nonlinear differential equations. Since the condition which determines the choice 
of step size is on T(x), the regions of x in which different step sizes are required 
can be determined as soon as T(x) is known for all x to sufficient accuracy-i.e., 
as soon as we have a trial value of the energy E [which appears in (2.7)] sufficiently 
close to the true value of E. Thus, in principle, T(x) need not be tested at every 
point during the integration; but in practice, such a test takes little time. 

For the practical point of view, the only step-size changes of interest are halving 
and doubling of the step size. It is imperative that T(x) should be calculated in 
minimum time. The effective way of doing so is to store, in core memory, the 
values of 

U(x) = P2MV(x)/12h2 (3.3) 

for all netpoints x, = nh on the finest net size h. The computation of T(x) for 
this net size is then a straight table-lookup followed by subtraction of a constant: 

T(x) - U(x) - h22ME/12h2 (3.4) 

If we restrict net-size changes to doublings and halvings, and if h in (3.3) is the 
finest net size ever used [i.e., the net size appropriate for the point at which we 
start the outwards integration, where f(x) and T(x) are largest], then the effect 
of net-size changes amounts to multiplication of the right side of (3.4) by an ap- 
propriate power of 4, a fast operation in a binary machine. If h is chosen as in- 
dicated, the possible net-size halvings during the course of the integration will 
never lead us to a net size h’ smaller than h, and there will never be a need for 
interpolation in the table of U(x). 

Doubling the net size is trivial: all we need to do is to carry along, during the 
integration, u(x - 2h) as well as u(x - h). When h is doubled, as a result of a 
test on T(x + h), the value of u(x - 2h) is stored into the position reserved 
for u(x - h), T(x) is multiplied by 4, and T(x - h’) = T(x - 2h) as well as 
T(x + h’) = T(x + 2h) are obtained by table-lookup followed by multiplication 
by a new power of 4. 

Halving the net size, at first sight, is more troublesome. If we decide that the 
absolute value of T(x + h) is too large for comfort, and to introduce the halved 
net size h’ = )h, we require u(x - h’) = u(x - Sh) to continue the integration. 
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The values of u(x) known to us are u(x - h) and U(S). We thus require an ac- 
curate formula for midpoint interpolation-accurate to the same order as the 
Noumerov method itself-for otherwise we lose the advantage of the Noumerov 
method. 

Letting x,, = x - &II be the point at which we desire to know U, our problem 
can be restated as follows: find u(x,), given values of u(x, + h’) and u(x, - A’), 
and given that u(x) satisfies the differential equation (2.1). 

The solution, though exceedingly simple, does not, to our knowledge, appear 
in the literature: it consists in using the basic formula of the Noumerov method, 
(2.8), to solve for U(X)! The accuracy is then obviously the same as the accuracy 
of the Noumerov method. No additional function values need be stored and 
net-size halving is now as simple as net-size doubling. For the sake of the record, 
we write down the midpoint interpolation formula explicitly2: 

u(x) = [I - T(x + h)lu(x + h) + [1 - T(x - h)Mx - h) + iAd6 __-__--I__--__-- -__ 
2 + lOT(x) -@(j- + . . . . (3.5 

IV. ITERATION ON THE EIGENVALUE WHEN WE ARE CLOSE; A DERIVATIVE FORMULA 

Let v(x) be a “trial function” which is sufficiently close to the true function 
u(x). We leave the deflnition of “sufficiently close” to Section V. Then the usual 
“variation method” of quantum mechanics asserts that an improved value of 
the energy eigenvalue E can be found by quadrature over the known function 
v(x), namely, 

2~4.~ S 4x1 t - (d2vlW + Df~(xVWx) 1 dx. 
iv = -- S [4x)1” dx (4.1) 

Written in this form, the expression is rather awkward. However, we have 
seen already that, for purely numerical reasons, we must integrate outwards for 
small x, and inwards for large x. We now make a virtue out of this necessity: 
Let Q be a trial value for the energy E, hopefully close to the true value of E. 
Then integrate the differential equation 

d2v __ = +!j [V(x) - Q]v(x) = f&)v(x), 
dx2 (4.2) 

first outwards from some sufficiently small value of x until we reach a joining 

*In the error term, we may replace 2 + lOT(x) by 2. 
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point x = x,, , then inwards from some sufficiently largue value of x until we reach 
the same joining point. The outwards integration is started in such a way that 
we obtain the exponentially increasing solution (see Section VII for the method), 
the inwards integration is started in such a way that we obtain the exponentially 
decreasing solution (which of course increases in the direction of integration). 
In either solution, there is one free multiplicative constant. We can, and do, read- 
just this constant at the end so that v(x) turns out to be continuous at x = x0, 
the joining point. In practice, x0 is chosen to be the minimum of the potential V(X). 

The fact that this u(x) is not yet the true solution to the eigenvalue problem 
manifests itself as a discontinuity in the first derivative v’(x) at x = x0. The left- 
hand value v,’ obtained from the outwards integration fails to equal the right- 
hand value vB’ obtained from the inwards integration. The second derivative 
d2u/dx2 therefore has a delta-function singularity at x = x0, which makes a 
finite contribution to the integral in the numerator of (4.1). Except for this delta- 
function contribution, the result would be just Q, the trial value for the energy, 
as can be seen by substituting (4.2) into (4.1). Putting things together, we obtain 
the simple iteration formula 

2ME 2MQ 
--x- = --?P- - 

f44&+2’ - %‘I 
S W>12d~ (4.3) 

The Simpson-rule sums necessary for the evaluation of the integral in the denom- 
inator can be iaccumulated during the process of solving the differential equation 
(4.2), and can be multiplied by the appropriate factors to make v(x) continuous 
at x=x0, without any problem. 

However, Eq. (4.3) is useless unless we have an accurate value for the derivative 
dv/dx = v’(x). The Noumerov method by itself fails to give us such a value; in 
fact, the Noumerov method is built on the fact that the first derivative does not 
appear explicitly in the differential equation. 

One method is to integrate the second derivative d2u/dx2 numerically; however, 
this is both awkward and productive of numerical inaccuracies. 

A better method, which is new to our knowledge, can be developed by using 
reasoning similar to that of the Noumerov method itself. We start by developing 
a low-accuracy formula, so as to show the basic idea; we then improve the method 
so as to get a derivative formula with an error term of order hgrF’). 

Returning to the Taylor-series expansion (2.4), we compute 

Al = -& [u(x + h) - 24(x - h)] = hu’ + $ u(3) + g u(5) $ . . . . (4.4) 
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Taking the second derivative on both sides, and muhiplying by hh2, we obtain 

[u”(x + h) - u”(x - h)] = $ ~(3) + $ #(5) + . . . (4.5) 

We subtract (4.5) from (4.4) and use the differential equation to replace U” by 
f(x)u(x), to obtain the first derivative formula: 

hu’ = [I - 7-(x + h)]u(x + h) - [l - T(x - h)]u(x - h) + (7/360)h6d5 + . . . 

(4.6) 

Here Z’(x) is defined by (2.7) withy(x) =f$x) defined by (4.2). The error term 
in (4.6) may be sufficiently small in some cases. It is, however, of order h5zd5), 
poorer than the basic error of the Noumerov method. 

At substantially no expense in machine time, the accuracy of the first derivative, 
and hence of (4.3), can be improved significantly, simply by using function 
values at x + 2h and x - 2h. We define 

and 

A, = +[u(x + 2h) - u(x - 2h)] (4.7) 

B, = &h2[u”(x + 2h) - u”(x - 2h)] 

= T(x + Zh)u(x + 2h) - T(x - 2h)u(x - 2h) (4.8) 

We then write down the Taylor expansions of AI, A,, B, , and B, , carrying terms 
up to order hedg) inculsive. We eliminate the terms proportional to hkzP with 
k = 3, 5, 7 and solve for hu’. The procedure is tedious but strightforward; we 
quote only the result which is 

Au’ = ‘6 4016 hgdD) 
21 

-A,+;A,-rlj!B,-;R, -359T+.... (4.9) 

Thus, by integrating a mere two steps beyond the joining point x = x,,, we can 
determine the value of the first derivative to an accuracy substantially better than 
the basic accuracy of the Noumerov method. (We note that the instability problems 
involved in the use of higher-order schemes do not arise here: we wish to find U’ 
at one point x = x0, whereas instability arises only if we wish to replace a dif- 
ferential equation by a difference equation of higher order, and to integrate over 
many steps.) 

We now have an iteration scheme of second order for the eigenvalue E: starting 
from a trial eigenvalue Q, near to E, we find an improved approximation to E 
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from (4.3). The improvement is second order, i.e., the error of E is proportional 
to the square of the error of the trial value Q, once Q is close enough. 

The iteration is terminated conveniently when we begin to hunt, i.e., when 
the new correction E-Q is both sufficiently small for safety (say, less than lo-” 
of E in absolute value) and no smaller than the previous correction in absolute 
value. The one unnecessary iteration can be saved after a bit of experience, by 
setting a straight upper limit on / E-Q 1, and terminating as soon as 1 E-Q 1 falls 
below this upper limit. 

[Although much of what we have done can be used also for coupled systems of 
equations, such as arise for example in the deuteron problem with tensor forces, the 
termination condition in that case can not be based on the size of the correction to 
the eigenvalue E. For coupled equations, involving unknown functions aI(x) and u,(x), 
say, the ratio ul/ua at the starting point of the integration must be determined as well 
as the eigenvalue E. Convergence of the ratio ul/ua is then a more stringent test than con- 
vergence of E, and the more stringent test must be applied if an accurate solution is 
desired. This problem does not arise in the situation discussed by us here, where the 
trial function v(x) and the trial eigenvalue Q are directly linked through the differential 
equation (4.2), with nothing but simple multiplicative factors at our disposal in the 
determination of V(X).] 

V. HOMING IN ON THE EIGENVALUE FROM FAR 

The iteration procedure described in the preceding section works only if the 
trial energy Q is already quite close to the true eigenvalue EN, associated with 
the eigenfunction Us which has the desired number N of nodes. We require 
a procedure to get to this stage, as well as a method of recognizing when we have 
gotten there. 

By far the easiest, and usually not far from the quickest, method for this pur- 
pose is the elementary device of halving the interval. Let us suppose that we know 
two energies Q, and Q, such that the desired eigenvalue EN lies certainly between 
them : 

Q,<Eiv<Qa. (5.1) 

We then try the value 
Q = HQ, + Qs> (5.2) 

and ascertain whether Q lies above or below the desired EN. If Q lies above EN, 
we replace Q, by Q and repeat the process; if Q lies below EN, we replace Q, 
by Q and repeat the process. At each stage, we gain exactly one binary digit of 
accuracy in the energy. Unless Q1 and Q, are very bad limits indeed, a few stages 
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of halving suffice to get us close enough to EL%. so that we can use the faster, sec- 
ond-order iteration scheme of Section IV. 

The first step to ascertain where Q lies in relation to EAT is to count the nodes 
of the trial function v(x) generated by (4.2). As we generate v(x), we count each 
node and accumulate. If the node count, at any stage, exceeds N, then the trial 
value Q was too high. Conversely, if at the end of generating v(x), the node count 
is below N, then Q was too low. Since we generate v(x) in two stages, so to speak, 
first by integrating out, then by integrating in, a bit of care is required to avoid 
double counting of nodes occurring right at the joining point x,,. 

While node counting is enough to reject completely unsuitable values of Q 
and to decide whether such values are high or low, a correct node count by it- 
self is not sufficient to allow us to use the procedure of Section IV. We have found 
the following simple scheme quite adequate to ensure convergence: 

(1) Ascertain whether the number of nodes in v(x) equals N; if not, proceed 
with halving. 

(2) If the node count agrees, proceed to evaluate the second-order correc- 
tion E-Q from (4.3) and (4.9); the sign of the correction is right, even if the 
magnitude is far off. Thus, if E-Q turns out to be positive, Q was too low, and 
we replace Q, by Q; if E-Q turns out to be negative, Q was too high, and we 
replace Q, by Q. 

(3) Now compute the new E = Q + (E - Q) predicted by the second-or- 
der iteration scheme. If this new value of E lies between Qi and Qz, it is safe to 
use. If not, the next trial value is determined by (5.2). 

In this way, we combine the safety of the halving scheme with the speed of the 
second-order iteration. Two cautions should be observed, however. (1) Once 
the correction E - Q gets very small, it is not necessary to readjust Qi and Qz, 
and it is actually safer not to, since round-off errors can then lead to trouble. 
(2) To avoid trouble of an unforeseen sort, it is desirable to keep a count of the 
number of iterations, and to go out with a failure indication once this count 
exceeds 50, say. This should not happen, but things which should not happen 
sometimes do; a simple iteration count will prevent looping of the program. 

VI. SETTING UPPER AND LOWER BOUNDS ON THE EIGENVALUE 

The halving method of Section V requires bounds Q, and Q, on the true eigen- 
value EN. In this section, we discuss methods of setting such bounds. 

The simplest case, and the one occurring most of the time, is that we already 
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possess a list of true eigenvalues EM with M = N - 1, N - 2, N - 3, . . . . N - k, 
say. Clearly Q, = ENbl is a lower bound for EN. Ordinary polynomical extra- 
polation of the list & to some depth j 2 k [in practice, j = Min(k, 4) is ade- 
quate] yields a prediction for EN, which we denote by W,. We then put 

Q, = EN-I 7 Qz = EN-~ + 2(W, - EN-~. (6.1) 

Unless the polynomical extrapolation is utterly unjustified, the factor 2 in (6.1) 
ensures that Q, lies above the true EN. Furthermore, when we start the halving 
procedure with this Q1 and Q,, the first value tried, by (5.2), is the predicted 
value, Q = W,. If the prediction is accurate, this first trial value is close enough 
to the truth to permit use of the second-order iteration scheme, which then yields 
full convergence in 3 or 4 steps. 

Use of (6.1) requires at least two known eigenvalues, ENel and EN-2. Thus, 
an alternative procedure is required at the beginning of the run. The simplest 
choice at the very start is 

Q, = Min]k’(x)], Q, = 0. (6.2) 

These are perfectly safe upper and lower bounds on all bound-state energies. There 
are two troubles, however: (1) Quite a few halving steps may be required if such 
generous bounds are used [this is not a very serious trouble, since (6.1) can be 
used after the second eigenvalue has been determined]: and (2) The choice of the 
range of integration (minimum and maximum values of x) for finding v(x), 
which is discussed in Section VII, depends on the trial energy. A range of inte- 
gration suitable for Q = &Min[V(x)], the first trial value generated from the 
choice (6.2) by means of (5.2), is generally a most unsuitable range of integration 
for the desired eigenvalue EN, p articularly so if N = 0, i.e., if we wish to start 
by generating the ground state. Thus, if (6.2) is used, the range of integration must 
be readjusted during the halving process until we are down to the right number 
of nodes. 

Better limits than (6.2) are available if we want to generate all eigenvalues EN 
from N = 0 onwards. Q, = Min[v(x)] is then a fairly close lower bound for the 
true E,,, but Qz = 0 would be a very bad upper bound. A simple scheme consistes 
in approximating V(x) near its minimum by a quadratic polynominal (oscillator 
potential) and determining the ground state energy of this oscillator, $(hv). We 
then set Qz = Ql + hv, the extra factor 2 serving as a safety measure. An al- 
ternative, and even safer, scheme, is to use (4.1) with a simple trial function 
4x), e.g., 

v(x) = exp[- a(x - x~)~]. (6.3 
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No matter what value of a we choose in (6.3), the right side of (4.1) is an upper 
limit QZ to the true ground-state energy E,. The two methods can be combined 
by determining the parameter a in (6.3) from the oscillator-potential fitting, the 
function (6.3) being just of the right form for the ground-state wavefunction of 
an oscillator potential. 

Although this method is safe, it is probably overly elaborate for the time gained. 
With a bit of experience, it is possible to make a reasonable guess at the zero- 
point energy E, - Min[V(x)], and to set a generous upper limit Q, which is none- 
theless far nearer to the true E,, than the trivial choice Qz = 0, without going 
to all the trouble of evaluating (4.1) numerically for the function (6.3). 

Once the lowest eigenvalue E. is known, a safe upper limit for the eigenvalue 
El is 

El _( Q, = E. + 3(Eo - Min[V(x)]}. (6.4) 

The factor 3 is exactly right for a square-well potential, and is an overestimate 
(hence giving an upper bound) for all other potentials; for an oscillator potential, 
the correct factor would be 2, to that 3 is a perfectly safe choice for an upper limit. 

Once E, and El are known, extrapolation becomes possible with more and more 
accuracy as further eigenvalues are accumulated. We thus fall back on the choice 
(6.1) which ensures very rapid convergence. 

VII. STARTING THE INTEGRATION: DECIDING ON THE RANGE OF INTEGRATION 

The outwards integration must start at a value of x less than the inner turning 
point x1 [the lower root of (2.3)]; the inwards integration must start at a value of 
x larger than the outer turning point x2 [the higher root of (2.3)]. In this section, 
we discuss the choice of these starting points, and hence the choice of the total 
range of integration for the wavefunction. We also discuss how the integrations 
are started so as to get the desired solution, i.e., the exponentially increasing so- 
lution for the outwards integration, the esponentially decreasing solution for the 
inwards integration. 

We discuss the second point first; that is, let us suppose we have chosen a start- 
ing value of x, call it x = a, for the outward integration. Clearly v(a) can be set 
arbitrarily, since one multiplicative factor is free. To get going with the Noumerov 
method, we require an approximation to v(a + h) for the exponentially increasing 
solution. 

The first thing to realize is that quite sizeable errors are permitted here. An er- 
roneous choice of v(a + h) has the effect of admixing, to the desired exponentially 
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increasing solution, a component proportional to the other, exponentially decreas- 
ing solution. As we integrate out from a towards the turning point xi, this er- 
roneous component becomes smaller and smaller, whereas the desired compo- 
nent increases in value. 

To the crude approximation needed here, the differential equation (2.1) is 
satisfied by 

4x1 E 4~) w-WQ)l, (7.1) 

W(x) = j;[f(~)]l/~ dx (7.2) 

This is one step cruder than the usual WKB approximation, but is good enough 
for us here. We now become even cruder, by replacing the integral in (7.2) by 
its trapezoidal-rule approximation. The result is the following estimate for 
u(a + h): 

u(u + h) N u(u) exp([3T(a)]l/” + [3T(a + h)]1’2}, (7.3) 

where T(X) is defined by (2.7), and is the quantity we require in any case for the 
Noumerov method. We note thatf(x), and hence T(x), are positive outside the 
classical turning points, so that the square roots in (7.3) are real numbers. The 
positive square roots should be used for the exponentially increasing solution, 
i.e., to get from a to a + h, and the negative square roots should be used for the 
exponentially decreasing solution, i.e., to get from the outermost point x = b 
to x = b - h, at the start of the inwards integration. We note that there is no 
difference, in the Noumerov method, whether one integrates inwards or outwards; 
the basic equation, (2.Q can be solved as easily for u(x - h) as it can for u(x + h). 

It remains to decide on suitable values of a and b. If a is too close to the inner 
turning point x1, we fail to generate enough of the desired wavefunction (we 
miss an appreciable part of the exponential tail); if a is too far from x1, we not 
only waste machine time by generating the wavefunction in a region where its 
value is exceedingly small and of no conceivable physical interest, but we can also 
get into scaling troubles: even modern machines, with floating-point facilities, 
do not allow an infinite range of the floating-point exponent! And once we are 
well and truly into the exponential region, it becomes all too easy to get into 
underflow troubles even on present machines. 

Suppose we wish to choose the inner starting point x = a so that u(a) is smaller 
than the value at the turning point, u(xl), by a factor exp(A), with A given a priori. 
For example, we might choose A = 16, corresponding to a factor of roughly 107. 
We now use the estimate (7.1), (7.2) to get the condition on a: 
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i -1’ [J‘(x)] % c/x A . (7.4) 

The integrand is zero at the upper limit, the classical turning point .v~. We 
again replace the integral by a trapezoidal-rule approximation, and keep going 
downwards through x1 - h, x, - 21’2, X, - 3h, . . . . until the accumulated sum ex- 
ceeds A. The terms in the sum are of form [I~T(xJ]‘/~ where T(X) is defined 
by (2.7). 

The uppermost value of x, x = b, is determined similarly, the condition being 

s :, [f(x)]“” d-x = A. (7.5) 

Since f(x) =&(x) [Eq. (4.2)] depends on the value of the trial energy Q, the 
turning points x1, x2, as well as the cutoff points a and b, depend on the value 
of Q. As Q increases, the outer turning point x2 and the outer cutoff point b move 
further out (increase in value), whereas the inner turning point x1 and the inner 
cutoff point a move inwards (decrease in value). In principle, therefore, a and b 
ought to be recalculated whenever the trial energy Q changes. 

This, however, is neither necessary nor desirable, except in the earliest stages 
of the iteration process, when the trial energy is still very poor. As soon as the 
upper limit Qz has improved to the point where it yields the right number of 
nodes, the values of a and b associated with this upper limit Qz should be retained 
and used throughout the remainder of the iteration. First of all, this saves time. 
Second, if a and b are allowed to change during the later stages of the iteration 
process, it is possible to get into serious trouble: the truncation errors associated 
with replacing the differential equation by a difference equation, as well as the 
errors made in the very crude starting formula (7.3), can lead to hunting of the 
second-order iteration procedure unless a and b are kept fixed. 
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